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Patterns in randomly evolving networks: Idiotypic networks

Markus Brede and Ulrich Behn
Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany

~Received 16 August 2002; published 31 March 2003!

We present a model for the evolution of networks of occupied sites on undirected regular graphs. At every
iteration step in a parallel update,I randomly chosen empty sites are occupied and occupied sites having
occupied neighbor degree outside of a given interval (t l ,tu) are set empty. Depending on the influxI and the
values of both lower threshold and upper threshold of the occupied neighbor degree, different kinds of behavior
can be observed. In certain regimes stable long-living patterns appear. We distinguish two types of patterns:
static patterns arising on graphs with low connectivity and dynamic patterns found on high connectivity graphs.
IncreasingI patterns become unstable and transitions between almost stable patterns, interrupted by disordered
phases, occur. For still largerI the lifetime of occupied sites becomes very small and network structures are
dominated by randomness. We develop methods to analyze the nature and dynamics of these network patterns,
give a statistical description of defects and fluctuations around them, and elucidate the transitions between
different patterns. Results and methods presented can be applied to a variety of problems in different fields and
a broad class of graphs. Aiming chiefly at the modeling of functional networks of interacting antibodies andB
cells of the immune system~idiotypic networks!, we focus on a class of graphs constructed by bit chains. The
biological relevance of the patterns and possible operational modes of idiotypic networks are discussed.

DOI: 10.1103/PhysRevE.67.031920 PACS number~s!: 87.18.2h, 64.60.Ak, 05.10.Ln, 02.70.Rr
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I. INTRODUCTION

Many complex coupled systems can be modeled as
works: Vertices being associated with the systems’ elem
and edges representing interactions between them. Meta
networks@1,2#, food webs@3#, social networks@4#, and net-
works in the immune system~for some approaches see Re
@5#! are some examples of such systems. Frequently,
though the detailed interactions of the elements may
rather complicated, the knowledge of the underlying netw
structure facilitates the understanding of essential feature
the system as a whole@6#.

In the absence of detailed knowledge of a network’s
pology, previous works tended to assume either a comple
random link structure@7–9# or clusters given by percolatio
on lattices@10#. The complexity of many systems, howeve
emerges as a consequence of some underlying principle
their evolution, e.g., preferential attachment@11#, optimiza-
tion of transportation and communication pathways@12–14#,
extinction of the least populated species@15,16#, or of the
mere fact that the network has randomly evolved in ti
@17#. This altogether may lead to a highly organized netwo
topology.

Recently, much attention has been devoted to a variet
networks that exhibit topological properties different fro
random graphs~for a review see Refs.@18–20#!. For obtain-
ing a detailed understanding of their architecture it h
proved useful to trace the dynamics of the network’s str
tural growth. As recently observed, major transitions in
systems dynamics can even be completely governed by
ceding transformations in its network structure@15,16#.

In the case of idiotypic networks~INW’s! in the immune
system@21#, dynamics and network evolution are driven by
continuous influx of new idiotypes from the bone marro
Data from experimental investigations suggest a daily b
marrow production only one order smaller than the act
1063-651X/2003/67~3!/031920~18!/$20.00 67 0319
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network size@5,22,23#. A second principle governing the dy
namics of INW’s is a set of local rules: idiotypes die out
they are understimulated or overstimulated, i.e., have too
or too many neighbors. As Conway’s famous ‘‘game of life
@24# suggests, systems governed by such local rules
evolve towards highly complex self-organized states@25#.

Starting from a simple set of rules intending to mimic t
dynamics within idiotypic networks in the immune system
we present a cellular automaton based model for the ev
tion of networks of occupied sites on graphs. Depending
the major parameter, the bone marrow influx, the model
hibits parameter regimes in which the system self-organ
into static and dynamic patterns, shows transitions betw
such ordered phases, and has a parameter range in whic
governed by randomness. We investigate these regimes
elucidate connections between the overall dynamics and
evolution of the network structure.

The organization of this paper is as follows. In the follow
ing section we introduce the model, give a brief introducti
to idiotypic networks, and outline further possible applic
tions of our model. Then, in Sec. III, we give an overview
the typical evolution of the initial dynamics of the populatio
and its connection with changes in the network structu
Next, in Sec. IV the stationary state and its network orga
zation will be characterized. In Sec. V the dependence of
system’s qualitative behavior on the model’s main parame
the influx I, will be explored. In the same section, analytic
results for smallI derived from a microscopic view of the
network characterizing fluctuations around the steady s
will be presented and an explanation for the systems higI
behavior will be given. In the final section changes in t
variety of stationary network patterns for more closely link
base graphs will be discussed.

The aim of this paper is not finetuning or in detail matc
ing of one of the applications, but rather generally explori
features of the dynamics caused by the window algorit
©2003 The American Physical Society20-1
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and understanding its connection with network structu
thus evolving.

II. THE MODEL AND SOME APPLICATIONS

Let G denote a lattice or, more generally, an undirec
connectedk-regular graph~i.e., a graph, each of whose ve
tices is linked tok neighbors!. Let vPG denote the vertices
or sites and the links between sites (i , j ) within G be de-
scribed by an adjacency matrix$mi j %1< i , j <uGu . For simplic-
ity, mi j P$0,1% and mii 50. In the followingG will also be
called base graph. A vertexvPG can either be occupied o
empty, i.e., have occupancys(v)51 or s(v)50, respec-
tively. Empty sites will be called holes. A vertexv with label
i has an occupied neighbor degree]v5( j 51

uGu mi j s( j )<k,
counting the number of its occupied neighbors. We prop
the following algorithm for an evolution of occupied an
empty sites onG.

~i! Throw in I occupied vertices, i.e., selecti holes ran-
domly and let them become occupied. This supply ofI new
occupied vertices will be called influx.

~ii ! Check the neighborhood of every sitevPG. If v is
occupied and has occupied neighbor degree]v greater than
tu or less thant l the vertexv will be set empty in the nex
time step. That is,st(v)51→st11(v)50 if ]v,t l or ]v
.tu . The update of~i! and ~ii ! will be parallel.

~iii ! Iterate~i! and ~ii !.
The threshold valuest l and tu are model parameters,t l50
corresponds to no lower threshold at all. Thus, the main c
acteristic of the algorithm is a window of allowed occupi
neighbor degrees. Hence we call it window algorithm. T
graph of all occupied vertices after iterationt is finished will
be denoted byG tPG andnt5uG tu will be called its popula-
tion.

Note that in the first instance unlimited growth of th
network is prevented by the upper thresholdtu . Once a
stable structure has been established, there are no ve
violating the minimum occupied neighbor degree rule unl
vertices are taken out because they got too many neigh
by the last influx. On the other hand, whiletu leads to an
instantaneous removal of vertices due to the most recen
flux, the lower thresholdt l can cause avalanches and is th
responsible for a memory of a perturbation which may l
over several iterations. Such avalanches are thought to a
the network structure.

These considerations make it also plain that fortu5t l and
tu5t l11 no long lasting populations can arise. In the fi
case, only at l regular graphG t could be formed. Then al
ready a small local reorganization would lead to an a
lanche extinguishing the whole graph. In the second c
every vertex ofG t is critical in a sense that it is prone t
being removed by a small perturbation caused by the infl

Our main motivation to study such kind of dynamics f
the evolution of networks comes from trying to model idi
typic networks INWs. The problem, however, appears to
far more general. Two other imaginable applications will a
be sketched briefly: evolving networks of interacting spec
and, for conceiving a vivid picture of the above algorithm
toy system of organzing coins in a box.
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A. Idiotypic networks

Immune response against a broad class of antigens~bac-
teria, viruses, . . . ) is triggered by antibodies andB cells
~which carry only one type of antibody on their surface!.
Schematically this can be sketched as follows. Perchance
antigen encounters a shape- and charge-complementary
body. Antibody and antigen thus form a complex that ma
the antigen as hostile so that it will be removed by anot
functional group of cells~e.g., killer cells!. If B cells, which
carry exactly this type of antibody on their surface come in
contact with such an antigen they become stimulated, mu
ply into a clone and finally become ‘‘production units’’ fo
this specific type of antibody.

It is the basic idea of idiotypic networks@21# that antibod-
ies can not only recognize an antigen, but also complem
tary anti-antibodies~the specificities of both are then als
called idiotypes!. This leads to stimulation of the respectiv
B cells and thus causes a kind of a permanent self-balan
immune activity independent of the hostile antigen.

These mutually recognizing idiotypes build the so-call
idiotypic network. Its vertices or nodes are represented
idiotypes, its links by functional interactions between the
INW’s are thought to play a role in, e.g., the preservation
idiotypic memory @21#, the prevention of autoimmunity
@26,27#, the discriminization between self and nonself, a
cancer control.

The interaction of idiotypes within the network can b
described by Lotka-Volterra-like dynamics, i.e.,

dxi

dt
5xiF2g i1 f S (

j
mi j xj D G1j i , ~1!

wherei is an index labeling different idiotype populations,xi

the concentration of idiotypei, g i its inverse lifetime,f a
so-called proliferation function describing the stimulatio
and death ofB cells and antibody production by stimulatedB
cells, andj i an influx rate of new idiotype species from th
bone marrow. Since secreted antibodies and those on
surface ofB cells are not explicitly distinguished, a descri
tion of INW dynamics as by Eq.~1! belongs to the category
of A models@5#. Bone marrow production is thought to b
uniformly distributed and random, i.e., there is a unifor
probability for every idiotype that a member of its populatio
is produced per unit of time.

It is a common approach to describe an idiotype or ver
v of the INW by a bitstring (v1 , . . . ,vd), v iP$0,1% of
length d @28#. Reasonable estimates for the number of p
sible idiotypes yield a bit-chain length of the orderd'35
@5#. Idiotypes interact if they are complementary. This
modelled by introducing ‘‘matching rules’’ that define whe
bit strings are connected in the above sense of complem
tarity. For instance, idiotypes can be said to interact if th
are nearly exactly complementary or—in other words—
respective bit-strings match allowing for one deviating po
tion, a mismatch, only. Generally, allowing bit strings withm
0-2
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mismatches to interact, one obtains ak5(k50
m (k

d) regular
graphGd

(m) whose links are described by an adjacency ma
with elements:

mi j
(m)5H 1 if dH~ i , j̄ !<m,

0 otherwise,
~2!

wheredH( i , j ) is the Hamming distance betweeni andj, i.e.,
the number of digits, in which the bit chains differ. The bet
the matching of the corresponding idiotypes, the stronger
reaction affinities. In this respect, in the sequen
Gd

(1),Gd
(2),•••,Gd

(m) gradually smaller affinities are take
into account.

Sometimes it is also convenient to employ another view
the link structure ofGd

(m) . In the frame of these bit-string
models every link is associated with a bit operationL, which,
applied to one of the vertices that the link connects, yie
the vertex at its opposite end. For links between vertices w
ideally complementary bit chainsi,j we havej 5L0( i ) ( i is
the inverse ofj ), for ‘‘one-mismatch links’’ j 5Lk1

( i ) ( i is

obtained by invertingj and changing the bit at positionk1),
for ‘‘two-mismatch links’’ j 5Lk1k2

( i ), etc. Thus, in this
sense, links are also labeled.

Using a discrete version of Eq.~1!, idiotypes are either
present (xi51) or absent (xi50). An idiotypev can survive
if it, on the one hand, receives at least a minimum amoun
stimulation from the network, but is not overstimulated
the other hand. Too high concentrations of antibody lead
each receptor of theB cell being bound to only one antibody
Since crosslinking of several antibodies is required in or
to stimulate aB cell, @5# this leads to suppression of th
idiotype’s population. A more careful analysis yields that it
reasonable to assume that the proliferation functionf is log-
bell shaped. Then, from the steady state conditions of Eq~1!
one obtains a rough idea of the maximum and the minim
occupied neighbor degrees,t l and tu . Normally, one match-
ing antibody specificity is sufficient to cope with an antige
Therefore in this modelt l51, which defines the time scale
for each iteration step.

B. Interacting species

A widely used approach to describe the interactions
species~macroscopic organisms, cells, reacting molecu
. . . ) is byLotka-Volterra-like dynamics of the type set fort
in Eq. ~1! @29#. The indexi now distinguishes different spe
cies,xi denotes their concentrations,2g i.0 the net effect
of death and birth rates,mi j the adjacency matrix describin
their interaction structure, andf a function modeling resourc
competition and the effect of predator-prey relations. Now
species does not require a minimum amount of stimula
but is still going to be restrained by the effects of resou
competition and prey. Thus,t l50 andtu.0. j in this con-
text models a kind of mutation rate, which describes
appearance of new species. Unlike the case of bone ma
production,j is not uniform, but restricted to the neighbo
hood of already existing species and also much sma
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Though probably hard to make out,G andmi j describe the
graph of all conceivable species and their potential inter
tions.

C. Coins in a box

Imagine a box and a heap of coins put inside initial
Then the box will be shaken, all overlapping coins be tak
out, and randomly generated new heaps of coins be pla
on randomly selected empty areas of the box. This proced
will be iterated several times. Clearly, in the above alg
rithm, the box corresponds to the base graphG, coins corre-
spond to occupied vertices onG, and empty areas to holes
Overlapping coins have too many neighbors, thus too h
an occupied neighbor degree and will consequently be ta
out. Since also isolated coins are allowed to remain, the s
ation is that oft l50. tu represents the maximum amount
coins that can be adjacent on a plane without overlap.

III. ANALYZING THE DYNAMICS

In this section we focus on analyzing the population d
namics and understanding corresponding changes in the
work structure. Figure 1~a! shows a sample trajectory for th
initial 300 time steps of the population dynamics for (t l ,tu)
5(1,7) andI 510 on a base graphG12

(1) . As there seems to
be a generic evolution with time it makes sense to look
averaged trajectories, i.e.,^nt&5(nnpt(n) wherept(n) de-
notes the probability that aftert iterationsn occupied vertices
will be present@see Fig. 1~b!#.

Clearly, several phases of the dynamics can be dis
guished. First, it takes a certain time till accidentally at le
a connected pair of occupied vertices is formed which th
functions as a germ for further network growth.

To elucidate the structure of this germ fort l.1 we define
three subsets of a clusterC: ~i! its ~generalized! t l-leaves
l t l

(C), ~ii ! its ~generalized! t l-stemst l
(C), and~iii ! its ~gen-

eralized! t l-tree-reduced componentr t l
(C). Leaves of the

first generation are vertices ofC with less thant l neighbors,
i.e., l t l

(1)(C)5$vPCu]v,t l%. Then, leaves of the secon

generationl t l
(2)(C) are vertices ofC\ l l

(1)(C) with less thant l

neighbors.~Here and in the sequel the symbol ‘‘\ ’’ denotes
the set theoretical difference.! Analogously, for n
52,3, . . . , l t l

(n)5$vPC\ l t l
(n21)u] uC\ l

t l

(n21)v,t l%, where

] uC\ l
t l

(n21)v denotes the number of occupied neighbors ofv in

C\ l t l
(n21) . Thus, the treelike component ofC is t t l

(C)

5ø j 51
` l t l

( j )(C), the stemst l
5t t l

2 l t l
(1) , and the tree-reduced

componentr t l
5C\t t l

. For t l52 these notions coincide with
the usual definitions in graph theory.

Consider the application of the window algorithm wi
lower thresholdt l . If not sustained by random influx, thet l
stem of a cluster is prone to successively fall victim to c
cades in which thet l leaves are taken out first. Vertices th
are critical, i.e., are still allowed, but will be removed if the
lose a neighbor represent the (t l11) leaves. On the contrary
the (t l11)-tree-reduced component is the subset not end
0-3
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gered by avalanches caused by critical vertices.
Apparently, the tree-reduced component of a cluste

invariant under step~ii ! of the window algorithm. So, fort l
.1 in the above context the germ, which fort l51 is just a
connected pair of occupied vertices, corresponds to a clu
with a nontrivial t l-tree-reduced component. In case of, e.
t l52 this is a 4-loop, fort l53 a cube, etc. The highert l is,
the more ‘‘organized’’ a germ is demanded and the longe
takes till it is formed perchance.

Initially, as this germ is still small it grows only slowly
since some of the new vertices are short of neighbors
thus are immediately taken out again. Then as a sec
phase of the dynamics a phase of almost linear growth of
population is entered. During this period almost all fresh
thrown in vertices survive, since the network is already
most dense~thus providing enough neighbors!, but still most
of the vertices have only small occupied neighbor degree
the number of vertices with higher occupied neighbor
grees increases, the growth of the population then abates
reaches a maximum. It can also be seen from Fig. 1~b! that
during this phase almost all occupied vertices belong to

FIG. 1. ~a! A sample trajectory for the populationnt , the giant
cluster, the 2-tree-reduced component of the giant cluster~‘‘back-
bone’’!, and its 2-leaves, see text. Parameters ared512, (t l ,tu)
5(1,7), andI 510. ~b! Averaged trajectories of the population, th
size of the greatest clusters, and the average cluster size v
time. Averages have been taken over 1000 independent runs
rameters ared58, (t l ,tu)5(1,5), I 56.
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giant cluster. At the same time (t'150) as the maximum is
reached, the giant cluster decays and small components
to split off. Interestingly, whereas in the initial stages of t
dynamics the number of critical vertices is always of t
same size as the influx, preceding the breakdown of the g
component more and more critical vertices are assem
@cf. Fig. 1~a!#. The maximum number of critical vertices i
assumed at the same time (t'240) as the giant cluste
breaks down.

The third phase now ensuing is marked by the comp
decay of the giant cluster and a coinciding drop of the po
lation. As soon as this is achieved the smaller fragments s
becoming rearranged, again associated with an increas
the population.

Finally, the system saturates into a stationary state aro
which fluctuations occur. The highertu is, the more the popu-
lation is allowed to grow initially and the more expressed t
above described behavior becomes. Independent of the u
threshold, always half of the vertices are occupied in the fi
state. Recurring to clustering properties it turns out that
erage as well as maximum cluster sizes tend to 2.0. Th
since there cannot be a cluster consisting of more than
occupied vertices this proves that for long timesG t com-
pletely decays into 2-clusters.

Holes play an important role in the systems’ approach
the steady state. A holeh will be called stable if it has occu
pied neighbor degree]h.tu . Clearly, unless it loses its
property to be stable, a stable hole cannot become occup
Reverting a stable hole back into a ‘‘normal’’ hole deman
the removal of]h2tu of its occupied neighbors, which itse
needs a rearrangement in the 1-neighborhood of these v
ces.

From these considerations one realizes that—depen
on the size of the neighborhood which has to be
arranged—there is a hierarchy of local structures with diff
ent ~local! stability. ‘‘Normal’’ holes have least stability
against random influx~they simply have to become occupie
to change their state!, then come occupied vertices~where a
change of their occupancy needs a rearrangement of
1-neighborhood!, and most stable are stable holes~which
need reorganizations of the 2-neighborhood!.

Figure 2 shows an averaged trajectory for the evolution
the number of stable holes and the population size. Surp

sus
pa-

FIG. 2. Averaged trajectory~over 1000 independent runs! of the
number of stable holes and of the population ford58, (t l ,tu)
5(1,5), I 52. The dotted line indicates half the system si
uG8

(1)u/25128.
0-4
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PATTERNS IN RANDOMLY EVOLVING NETWORKS: . . . PHYSICAL REVIEW E 67, 031920 ~2003!
ingly, even during the phase of declining population~which
means that fewer occupied vertices to make a hole stable
available! the number of stable holes increases till finally
the steady state all holes tend to be stable. This can be
derstood from the above considerations. As described ab
in detail, the reversion of a stable hole into a normal h
requires occupied vertices in the neighborhood of the hol
be removed. However, the removal of vertices becomes m
difficult the more stable holes are in their neighborhoo
Thus, apparently, stable holes situated in each others~up to
2! adjacency can promote mutual stability. As a conseque
of this a formation of almost ‘‘frozen’’ domains that ar
made of mutually stabilizing stable holes can be expec
These domains compete with each other and finally one
them prevails and fills the complete system. Indeed, the
rangement of occupied vertices and holes in the steady
exhibits patterns that will be discussed more closely in
following section.

IV. THE STATIONARY STATE

In order to characterize the network structure of the s
tionary state, every vertexvPG is assigned a mean
occupancy rate s̄(v)51/(T12T0)( t5T0

T1 st(v) and a

mean switch rater̄ (v)51/(T12T0)( t5T0

T1 (12dst(v),st11(v)).

Mean-occupancy rate and mean switch rate give a mea
of how many times a vertex is occupied or changes its oc
pation during the time interval@T0 ,T1#. T0 will be chosen
such that the system has already reached the stationary
This method provides a way of obtaining an average pict
of the occupation ofG.

Figure 3 shows the mean occupancy rate and mean sw
rate of every vertex after a simulation onG8

(1) . Clearly, ver-
tices with high-mean-occupancy rate have a low switch r
and vice versa. Thus, vertices that are frequently occup
tend to be occupied almost permanently; seldom occup
ones tend to be almost always holes.

To elucidate the structure of the network formed by t
highly active vertices we define the subsetS(a)
5$vPGus̄(v).a% containing all vertices that are more fre
quently occupied than with ratea.

In Fig. 4 the number of vertices belonging toS(a) and the
greatest connected cluster ofS(a) are shown as a function o
the threshold valuea. Due to the logarithmic scale a firs
drop from uS(a)u5256 to uS(a)u5130 ata50 is omitted.
Two further thresholds become apparent: one ata1'3
31024 where the size of the greatest component ofS(a)
rapidly drops to size 2 and a second one ata2'0.893 which
marks the decline in the distinction of high- and low-mea
occupancy vertices seen in Fig. 3.

In order to get rid of fluctuations occurring during th
iterations, one can distinguish a set of high-mean-occupa
verticesSH5S(a1) ~which can be considered as permanen
occupied! and a setSL5G\SH ~corresponding to permanen
holes! of vertices with low-mean occupancy. From Fig. 4 o
derives further thatSL decays also into two groups, name
a setSL1

of 128 vertices with mean occupancy 0 and tw
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vertices ~seen as a drop ofuS(a)u from 130 to 128 ata
5a1) with somewhat larger mean occupancya slightly
smaller thana1. These two connected vertices having ea
k2158 neighbors fromSL1

are in the center of a starlike
cluster of low-mean-occupancy vertices~cf. Fig. 5!. They
represent a vertex pair normally belonging toSH which has
accidentally been taken out and not got refilled yet. Th
they form a defect in the expression of a pattern struct
~see Sec. V A!.

FIG. 3. Mean-occupancy rate and mean switch rate for ev
vertex after a simulation onG8

(1) with parameters (t l ,tu)5(1,4), I
55. The relaxation time was chosenT05104, then averages ove
T1593104 time steps were taken. Bit stringsv5(v1 , . . . ,v8) are
uniquely represented by integersz5( i 50

7 v i2
i .

FIG. 4. Number of vertices belonging toS(a) ~see text! and the
size of the greatest connected component ofS(a) as a function of
the thresholda. Data are taken from simulations onG8

(1) with the
window (t l ,tu)5(1,4) and influxI 55. Due to the logarithmic scale
the first point showing a drop ofuS(a)u from uGu5256 to 130 is left
out. The dotted line indicates the leveluS(a)u5128. Data have been
assembled forT1593104 iterations after a relaxation timeT0

5104.
0-5
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M. BREDE AND U. BEHN PHYSICAL REVIEW E67, 031920 ~2003!
A further clustering analysis ofSH and SL reveals that
both subsets ofG consist only of 2-clusters. Therefore, eve
vertex of vPSL has exactly]v5k21 neighbors fromSH
and thus forms a stable hole of maximum possible stabi
This justifies the above notion of a frozen domain.

In case oftu5k21 a holes being stable would require
leastk5tu11 of its neighbors to be occupied. Due to th
2-cluster nature of the pattern, however, onlyk21 neighbors
are available, so that holes cannot be stable in this c
Patterns then become extremely transient in the sense
cussed below in Sec. V B.

A. Metastable patterns and global stability

The actual steady state pattern, classified by grouping
vertices with clearly distinguished mean occupancy rates,
pends on the influxI. If I is very small compared to th
system sizeuGu, also patterns different from the 2-clustere
pattern appear. The variety of such patterns is very abun
for t l50, becomes smaller the more restrictive the wind
is, and increases with decreasing ratioI /uGu.

They prove to be metastable, i.e., relax to a more sta
pattern and finally to the 2-cluster pattern on very long ti
scales. Interestingly, fort l50 both setsSH andSL prove to
have exactly alike properties and thus, the system is symm
ric against an exchange of occupied vertices and holes@30#.

Figure 6 gives examples for such a metastable pat
together with a visualization of the isomorphic graph stru
tures ofSH andSL . Typically, they consist of a large numbe
of small clusters and few larger components. In the orga
zation of the network structure of subclusters ofSH andSL ,
basic units~e.g., 6-loops in Fig. 6! play a role. Nevertheless
the majority of the clusters turns out to be asymmetric.

In this context, a comparison torandomgraphs onG il-
lustrates the very high organization of these patterns. A r
dom graphG,G ~constructed by occupying vertices ofG

FIG. 5. Illustration of the cluster structure of the defect caus

by the two vertices with mean occupancy rates̄'a1 ~drawn in
gray! for k59. These vertices are in the center of a starlike clus
of other low-mean-occupancy vertices fromSL1

~empty circles!. For
a.a1 they no longer belong toS(a) and thus their removal cause
a decay of this cluster into ten 2-clusters of holes.
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with a uniform occupation probabilityp) will contain almost
always only one giant connected component forp.pc
;1/k @32#. Here, multiple giant components exist, althou
the fill ratio uSHu/uGu50.5 far exceeds the percolation thres
old.

Stability of a pattern is determined by the stability of i
stable holes. Thus, a~rough! measure for the stability of a
pattern is, e.g., the average occupied neighbor degree o
holes^]v&vPSL

. It turns out that the holes in all these met
stable patterns have an average occupied neighbor de
slightly smaller than that of the 2-clustered configurations

Figure 7 shows another way to quantify stability. For th
purpose we apply a test influxĨ . More specifically, a pattern
P of holes and occupied vertices is taken, a numberĨ <uLu of
its holesh belonging to the low-mean-occupancy setSL ran-

d

r

FIG. 6. Nontrivial clusters that appear in metastable patterns
I 55, (t l ,tu)5(0,7) onG11

(1) . ~a! 5- and 16-clusters from a patter
built by 192 singletons, 64 5-, and 32 16-clusters.~b! 14- and 44-
clusters from a pattern with with 208 1-, 48 5-, 16 14-, and
44-clusters.~c! 2-tree-reduced component of the 203-cluster from
pattern consisting of 152 1-, 12 2-, 12 3-, and 4 203-clusters~2- and
3-clusters form chains!. In the cases~a! and~b! larger clusters con-
tain structures that resemble the smaller clusters. Larger loops
pecially 6-loops and trees play a distinguished role. In all cases
dimension of the cluster structures is remarkably low.
0-6
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PATTERNS IN RANDOMLY EVOLVING NETWORKS: . . . PHYSICAL REVIEW E 67, 031920 ~2003!
domly selected and occupied, the window algorithm appli
and the distanced(P,P8)5(vPGusP(v)2sP8(v)u between
the original pattern and the resultant graphP8 measured.
Intuitively, Ĩ is a measure for a perturbation that is applied
the pattern. A small mean deviation^d(P,P8)& means a high
stability against random influxĨ . For growing system size
the sigmoid function̂ d(P,P8)&/uLu tends to a step function

Confirming the above ideas, Fig. 7 visualizes two tend
cies:~i! an upper thresholdtu,k21 closer tok21 @33# and
~ii ! a higher mean occupied neighbor degree of ho
^]h&hPSL

promote the stability of patterns. Indeed, patte
whose holes have the same mean occupied neighbor de
exhibit almost the same stability characterist
^d(P,P8)&/uLu. For example, holes in the patterns wi
(t l ,tu)5(0,7),̂ c&58/3 and (1,7),̂c&54 whose curves co
incide in Fig. 7~boxes and pluses! have both a mean occu
pied neighbor degreê]h&hPSH

58.5.
Due to the high supply of new idiotypes from the bo

marrow these patterns are without interest for the purpos
modeling immune networks. However, it could be conceiv
that they prove interesting in the context of evolving spec
interaction networks where the influx as the mean numbe
new species per time unit is small in comparison to the ov
all network size.

B. Stable base configurations

The 2-clustered patterns are distinguished in two respe
~i! they are the only patterns evolving if the influx is hig
and~ii ! they are stable, i.e., if once such a pattern is assu
the system will not relapse to one of the metastable patte
Therefore we call these stable base configurations.

The complete decay of both hole and vertex configu
tions into 2-clusters allows it to calculate the multiplicity
these base configurations. It turns out that the global st
ture of a base configuration is already determined locally
fixing the occupancys0 of one connected pair of vertices. B

FIG. 7. Relative mean distance^d(P,P8)&/uLu as a function of

the relative influxĨ /uLu for patterns that arise onG9
(1) . Different

lines correspond to patterns with different mean cluster sizes^c&
which emerge for the given combinations of thresholds (t l ,tu); see
text. For the given relative influx, patterns are more stable
smaller their relative mean distance to the unperturbed pattern.
that the data points marked by boxes and pluses almost coin
Both patterns have the same mean occupied neighbor degree
text.
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the knowledge of the 2-cluster structure ofSH and SL one
then knows that the vertices in the neighborhood of this p
have occupancys1512s0. Thus, also the occupancy o
their 2-cluster mates is fixed, which in turn determine t
occupancy of vertices in their neighborhood and so on.
this argument every vertex’s occupancy is uniquely de
mined sinceG is connected. All base configurations co
structed in this way have been found to occur and are
morphic to each other in the sense that without label
vertices they cannot be distinguished.

As a consequence of the above argument, fixings0 and
choosing one arbitrary vertexoPG and a link associated
with a bit operationP leading to a two-cluster mate ofo,
P(o), base configurations can be denoted byB(s0 ,P) . Hence,

the number of possible base configurations is 2k. The sys-
tem is degenerate, though as 2k/uGu→0 for uGu→` not
macroscopically.

From a biological point of view it appears appealing
identify 2-clusters with idiotype–anti-idiotype pairs, the an
idiotype playing the role of an internal image~memory! of a
previously encountered antigen@21,34,35#. The 2-clusters
found here, however, are ‘‘coherent’’ in a fixed pattern of
stable base configuration. This implies a maximum stor
capacity 2k which—also for large systems—is far too few
account for experimental observations.

It appears useful to consider distances between base
figurations. One finds

d~B(s0 ,P) ,B(s1 ,Q)!5H uGu/2 if PÞQ or s0Þs1,

uGu if P5Q and s0512s1,

0 if P5Q and s05s1 .
~3!

Therefore, except the ‘‘inverse configuration,’’ base config
rations differ in exactly the half of their sites from all othe
base configurations. For the casePÞQ or s0Þs1 half of the
differing vertices are holes and half occupied vertices. Th
the difference between base configurations is of the orde
the system size and a change from one base configuratio
another cannot take place without a major reorganization

As the influx I increases occupied vertices become m
and more prone to being removed. So, it can be expected
the distinction between frequently occupied and scarcely
cupied vertices loses sharpness. IncreasingI over a threshold
leads to a completely different behavior of the system.
rameter regimes in which the system exhibits qualitativ
different dynamics will be discussed in the following sectio

V. DEPENDENCE ON THE INFLUX I

The systems behavior depends crucially on the cluste
properties ofG t . To obtain a picture of the dynamics o
cluster changes the time-averaged cluster size distribu
over the interval @T1 ,T0#, p(c)51/(T12T0)( t5T0

T1 pt(c),

wherept(c) denotes the probability that an arbitrary vert
of G t belongs to a cluster of sizec, has been investigated
Figure 8 shows numerical data for the cluster size distri
tion obtained for five different values ofI. For small influx

e
te
e.

see
0-7
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FIG. 8. Numerical data for the cluster siz
distributionp(c) for different influxesI 520 ~a!,
30 ~b!, 40 ~c!, 80, and 120~d! corresponding to
different regimes as described in the text. Sim
lations were performed onG8

(1) with (t l ,tu)
5(1,5).
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I 520 @Fig. 8~a!# the systems’ behavior is dominated by t
occurrence of 2-clusters. Occasionally also other cluster
sizes c56, . . . ,11 andsizes c516, . . . ,20 appear. ForI
530 @Fig. 8~b!# the distribution has a structured tail of seri
of local extrema. Then, forI 540 @Fig. 8~c!# the 2-cluster
dominated structure is still expressed, but now also clus
some orders of magnitude larger are found. Finally, foI
580 andI 5120 @Fig. 8~d!#, the clustering structure is dom
nated by~depending ont l and tu) one or several giant clus
ters and 1-clusters~singletons! which more and more out
weigh other small clusters asI is further increased.I 520,
40, and 80 represent three different parameter regimes
the influx that will be treated below.

A. Small I : A statistical approach of defects

For small I during the initial stages of the dynamics th
2-cluster dominated pattern as described in Sec. IV B
formed. Once such a pattern is establishedI works as a per-
turbation that incidentally causes defects to the ideal pat
structure. These defects can be classified into two gro
‘‘hole’’ defects and ‘‘vertex’’ defects~cf. Fig. 9!. Both terms
arise from a comparison between the perturbed configura
G t at timet and the base configurationB the system is in. By
the term vertex defect we understand a vertex that is oc
pied in B, but empty inG t . Likewise, a hole defect is a
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vertex that is empty inB, but occupied inG t . Clearly, hole
defects are caused byk212tu correlated vertex defects an
thus are much less probable than vertex defects. As lon
only vertex defects occur only 1- and 2-clusters can
formed. However, once a hole defect is established, it se
as a junction for its surrounding 2-clusters and clusters
size 2n11, n51,2, . . . ,k are built. For example, in Fig
8~a!, local maxima are found forc57,9, and 11. The latter
one corresponds to the most probable kind of hole defec
formerly stable hole now is occupied and has five remain
occupied neighbors. In the case of the less probable clu
of size c59 four once occupied neighbors of the hole a
defective, thus four are remaining. Analogously forc57. As
the 2-clusters surrounding a hole defect might also be de
tive though less frequently also clusters of even size app
The second series of local maxima aroundc520 in Fig. 8~a!
can be explained by hole defects that are correlated, i.e.,
defects whose occupied 2-cluster neighbors are connect

This microscopic picture of the process suggests a tr
ment borrowed from equilibrium statistical mechanics. Sin
defects are more likely to occur for higher influx,I can be
associated with a kind of a ‘‘temperature’’T(I ). T(I ) will be
growing monotonically withI. Defects are assigned an ‘‘en
ergy’’ a(tu) that describes the probability that a defect
caused. Since it is harder to remove occupied vertices
higher tu is, it is also expected thata grows with increasing
upper thresholdstu .
0-8
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PATTERNS IN RANDOMLY EVOLVING NETWORKS: . . . PHYSICAL REVIEW E 67, 031920 ~2003!
In the following we derive a statistical description for a
ideal gas of defects.

1. The case tlÄ0

The probability to cause a vertex defect depends on
number of holes surrounding the occupied vertex. In spite
this no distinction between defects of completely remov
2-clusters and singletons will be made. This is justified sin
for large systems an occupied vertex that remains afte
2-cluster mate has been removed is still surrounded by
most the same number of holes. Furthermore, fort l50 the
algorithm allows the permanent existence of singletons.

The probability of havingl independent defects of energ
a at temperature 1/b(I ) in an ideal pattern ofN5uGu/2 oc-
cupied vertices is

p~ l !5
1

Z S N

l D e2 lba, ~4!

where the partition sumZ is easily determined as

Z5(
l 50

N S N

l D e2 lba5~11e2ba!N. ~5!

Then the mean number of defects is given by

^ l &52
1

b

] ln Z

]a
5N2^n&5N

e2ba

11e2ba
, ~6!

^n& being the mean number of actually occupied vertices
Comparing with data obtained from simulations it tur

out that the ansatz 1/b5I 01I holds for a broad range o
different values ofI. From a fit of the mean populations wit
Eq. ~6! one obtainsa588.1460.48 andI 050.6760.18. In
the whole range up toI ,35 mean values and probabilit
distributions calculated by Eq.~4! are in good agreemen
with simulations~see Figs. 10 and 11!.

For very smallI it is by simple combinatorics possible t
obtain an approximation for the ‘‘energies’’ fitted from th
data of Fig. 10. If for fixedtu the influx I is so small that it

FIG. 9. Illustration of ‘‘hole defects’’~left! and ‘‘vertex defects’’
~right! for (t l ,tu)5(0,4). The defective vertex is printed in gra
holes in white, and occupied vertices in black. On the left hand s
one of the central holes has 5.tu occupied neighbors and thus
stable. The gray hole has lost two of its neighbors due to ‘‘ver
defects.’’ Only 3,tu neighbors remain so that the gray hole has l
its stability and can be occupied. Both unstable and occupied h
are called hole defects. On the right hand side, the gray vertex
removed, thus causing a defect to the ideal 2-cluster pattern s
ture.
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can cause not more than exactly one vertex defect, i.eI
,2(tu11), the probability per site for a defect is@31#

pd~ I !5S N

I D 21

(
j 5tu

k21 S I

j D S k21

j D S N2~k21!

I 2 j D . ~7!

If no more than one defect can arise, the mean numbe
defects is given bŷ l &(I )5Npd(I ). Using Eq.~7! one cal-
culatespd(tu) and pd(tu11). A comparison with Eq.~6!
yields

a21'@ ln pd~ tu!#
212@ ln pd~ tu11!#21, ~8!

e,

x
t
es
as
c-

FIG. 10. Mean population̂n& versus influxI taken from simu-
lations for (t l ,tu)5(0,5) onG8

(1) . The crosses represent simulatio
data; the line corresponds to a fit of^n& calculated from Eq.~6!. Fit
parameters area588.14 andI 050.67.

FIG. 11. Probability distributions p(n)51/(T1

2T0)( t5T0

T1 (nnpt(n) for the population size obtained from simula

tions onG8
(1) for (t l ,tu)5(0,5) andI 530 ~a! and I 520 ~b!. The

simulation results~crosses! are compared withp(N2n) from Eq.
~4! ~lines connect calculated points! usinga588.14 andI 050.67.
0-9
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M. BREDE AND U. BEHN PHYSICAL REVIEW E67, 031920 ~2003!
which, e.g., evaluated ford58 and tu55 gives a550.8,
which is of the same order as the numerical valuea
588.14. ComparingI 0 is not reasonable, since Eq.~6! bears
deficits for small influxes.

Indeed, the range of validity of Eq.~6! is limited in two
respects. First, although the possible number of defects
small I is limited by bI /tuc the sum in Eq.~5! extends up toN.
However, for low temperatures surplus defects are coun
with only a small statistical weight. This approximation b
comes worse for high upper thresholdstu . Second, too many
vertex defects~which then become correlated! lead to hole
defects. Hole defects destabilize the 2-cluster pattern
lead to a qualitative change of the above picture.

2. The case tlÄ1

For t l51 a distinction between two types of vertex d
fects becomes necessary. Now, unless a new 2-cluster m
provided by fresh influx during the next iteration, a singlet
violates the lower threshold rule. Hence it can only surv
for one time step.

To cope with this situation in the present framework d
fects consisting of a singleton (a defects! are assigned an
energya, defects made of a completely removed 2-clus
pair (g defects! an energyg. Both energies are expected
increase with growing bit-chain lengthd and for higher up-
per thresholdstu . Then a configurations energy withl 1 a
and l 2 g defects isE( l 1 ,l 2)5 l 1a1 l 2g.

The probability of havingl 1 independenta and l 2 g de-
fects is

p~ l 1 ,l 2!5
1

Z S N/2

l 1
D S N/22 l 1

l 2
D 2l 1e2 l 1bae2 l 2bg. ~9!

For the partition sum one obtains

Z5 (
l 150

N/2 S N/2

l 1
D 2l 1e2 l 1ba (

l 250

N/22 l 1 S N/22 l 1

l 2
D e2 l 2bg

5~112e2ba1e2bg!N/2. ~10!

In analogy with Eq.~6! one derives the mean number ofa
defects,

^ l 1&5N
e2ba

112e2ba1e2bg
, ~11!

and obtains the mean number ofg defects,

^ l 2&5
N

2

e2bg

11e2bg12e2ba
. ~12!

Finally, the number of empty vertices isn5N2 l 122l 2,
and hence the mean population is given by

^n&5N
11e2ba

11e2bg12e2ba
. ~13!
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The ansatz 1/b5I 01I is again confirmed by a compar
son of Eq.~13! with numerical data for the mean populatio
~see Fig. 12!. The probability distribution thatn vertices are
occupied at a timet is

prob$n occupied vertices%5 (
l 250

l max

p~N2n22l 2 ,l 2!,

~14!

wherel max5bN/22n/2c andp( l 1 ,l 2) as given by Eq.~9!.
Analytical results derived from Eq.~14! are again in good

agreement with simulation data~see Fig. 13!. Equations~13!

FIG. 12. The mean population forG10
(1) with (t l ,tu)5(1,5). Fit-

ting with Eq. ~13! leads toa5632699, g5250.6613.1, andI 0

536.164.2. The fit breaks down if one tries to include the ran
I>150 that marks the onset of the transition region~see Sec. V B!.

FIG. 13. Comparison between simulation data for the proba
ity distributions of the population size forG10

(1) , (t l ,tu)5(1,5) ~a!
I 525 and~b! I 580 and results derived from Eq.~14! for the same
a, g, andI 0 as in Fig. 12. In~b! the influx is already high enough
that both types of defects appear with almost equal probabilitie
0-10
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FIG. 14. Simulation data forG8
(1) , (t l ,tu)

5(1,4). ~a! shows the populationn, the numberh
of stable holes, and the size of the greatest c
nected component ofG t , gc. Initially, approxi-
mately half of all sites onG8

(1) become stable
holes and a pattern is assumed.~b! shows a tran-
sition period. The number of stable holesh and
the populationn drop suddenly, a giant cluster i
formed. ~c! shows the smallest and the seco
smallest distance to a stable base configurat
m1 and m2 ~cf. text!. In the transition period no
pattern is selected.~d! displays a number for the
pattern that has the smallest distance toG t . In the
transition period between two sharply assum
patterns the state changes quickly. Fort
P@200,1700#, kmin55, for t.2000, kmin54.
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and~14! are subject to the same limitations as in the case
t l50.

B. The transition region

As previously discussed increasingI beyond a threshold
leads to a growing number of hole defects. The appeara
of correlated hole defects is connected with the formation
great clusters consisting of connected 2-clusters. AsI be-
comes still larger, the probability that hole defects beco
correlated increases. Occasionally this leads to the em
gence of a giant cluster~see Fig. 8, the different series o
local maxima correspond to an increasing number of c
nected hole defects!. Speaking in the language of thermod
namics, growing influx entails a growth of fluctuations th
finally tend to overthrow the regular pattern structure.

The building of a giant cluster requires the reversion o
major fraction of the stable holes into normal holes. Th
since stable holes form the ‘‘skeleton framing’’ of the patte
structure, the system relapses into a phase where no pa
lasts for a longer time span.

Figure 14 illustrates this behavior for a simulation onG8
(1)

with (t l ,tu)5(1,4). Initially, after the first stages of the dy
namics the system settles into a steady state. For better
tration every stable base configurationB(s0 ,P) is given a

unique numberk,k51, . . .,18. In Fig. 14~c! the minimum
distance

m15min
k

d~G t ,Bk! ~15!

and the second smallest distance
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m25 min
kÞkmin

d~G t ,Bk! ~16!

to any stable base configuration are shown. For the t
intervals @200,1700# and @2000,3000# it holds m1!m2.
Consequently the system is in the stable base configura
Bkmin

. Incidentally, hole defects associated with the em
gence of larger clusters appear. Mostly, as long as hole
fects remain uncorrelated, they are repaired during the n
iterations. At t'1700 the exact lock in of statekmin55 is
lost and fortPI change5@1700,2000# a phase marked by fre
quent changes ofkmin is entered. During this periodm1
'm2 and thus no base configuration is sharply assumed
comparison of vertex mean occupancy rates during
phase and the previous one justifies to speak of the t
interval tPI change as of a disordered period, since, clear
any distinction between high-mean-occupancy and low-m
occupancy vertices is lost~see also Fig. 15!. As expected, the
emergence of the disordered phase goes hand in hand
the formation of a giant connected component inG t , a dras-
tic loss of stable holes, and a drop in the population.

The whole dynamics of the system is marked by a
quence of ordered and disordered phases. AsI is increased,
the residence time in ordered phases declines till finally
frequency of ‘‘base configuration’’ changes~defined as a
change ofkmin) tends to 1. Thus, the system becomes co
pletely disordered.

Figure 16 displays simulation data onG10
(1) with (t l ,tu)

5(1,8) for the mean time~residence time! during whichkmin
remains unchanged. An abrupt transition from a ph
marked by permanent patterns to a phase of transient pat
0-11
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FIG. 15. Comparison between the mean occ
pancy distributions measured in a transition p
riod ~left! and during the time before the trans
tion period ~right!. In the right hand figure a
2-clustered pattern is assumed. Same parame
as in Fig. 14.
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interrupted by periods of disorder occurs atI c'270. Accord-
ingly, as can be seen from Fig. 17, the mean lifetime~aver-
aged over all vertices! drops abruptly during this range o
influxes. ForI .300 mean lifetimes decay exponentially a
quickly tend to 1. Very short lifetimes, however, do not allo
for static order or memory. Apparently, the transition fro
order to disorder goes through a phase of more and m
frequent pattern changes.

C. High IÌI c : Iterated maps

For influxes I .I c the lifetime of occupied vertices be
comes very short. This indicates that the system can
longer form ordered patterns and long-time correlations
tween the systems configurations disappear. Thus, while
low influx clearly ^nt11& is an intricate function of both the
systems configurationG t at time stept and the most recen
influx, for high influxes the mean population at time stept
11 tends to depend only on the size ofI and the mean
population at the previous time step. Also, from the me
occupancy distributions one conjectures that the structur
G t is essentially random, i.e., obtained by randomly occu
ing uG tu vertices of the base graphG.

If one randomly occupiesn sites of a base graphG the
relative mean numberh(n) of occupied sites after sites wit
occupied neighbor degrees outside of (t l ,tu) have been re-
moved is given by

hS n

uGu D5H n

uGu (
l 5t l

tu S k

l D S n

uGu D
l S 12

n

uGu D
k2 l

if n,uGu

0 otherwise.
~17!

Considering a large random influx, apart from fluctuatio
the relative populationxt will evolve according toxt11
5h(I /uGu1xt). Thus, in the steady statex will preferably
assume values near the stable fixed points of the sh
function g(x)5h(I /uGu1x), i.e., near the solutions ofx*
5g(x* ). Linear stability analysis yields that a fixed poi
is stable if ug8(x* )u,1. Analogously, n cycles
$x* ,g(x* ),g(2)(x* )5g„g(x* )…, . . . ,g(n21)(x* )% are solu-
tions of g(n)(x)5x and are stable ifug(n)8(x* )u,1.

For k511 and (t l ,tu)5(1,8) g(x) is a function with one
maximum. Consequently, one expects thatg(n) has at mostn
maxima. Thus, in principle, cycles of higher order are p
sible.
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The functiong(x) is a polynomial of ordertu . Thusg(n)

is of order tu
n and there is no general analytic solution

x* 5g(n)(x* ). As an example we consider the case (t l ,tu)
5(1,8) onG10

(1) , i.e., k511 anduGu51024. Evaluating the
fixed point equations numerically, one obtains the bifurcat
diagram displayed in Fig. 18. Atx50.2 one finds a forward
pitchfork bifurcation towards a 2-cycle, which then atx
50.3 becomes also unstable, leading to the emergence
4-cycle. Forx50.45 this 4-cycle is found to become un
stable and a backward pitchfork bifurcation leads again t
stable 2-cycle. Far outside the region of biological intere
for x50.93 a backward bifurcation occurs and the sing
fixed point solution again becomes stable. Figure 18 a
displays data obtained from simulations of the window alg
rithm onG10

(1) which exhibit the same qualitative behavior
the iteration ofg. As expected, deviations become small aI
increases.

VI. MORE DENSELY WIRED SYSTEMS:
TWO-MISMATCH BASE GRAPHS

In this section some observations about the dynamics
ated by the window algorithm witht l51 on more densely
wired base graphs will be presented. As a consequence
higher coordination number different static patterns and s
eral dynamic patterns can be observed. In principle, we
pect~i! more sparsely populated, and hence transient patt
of reduced stability for lowtu and~ii ! enhanced stability for
upper thresholds close tok21 ~cf. Sec. IV A!.

As an extension of the base graphsGd
(1) whose link struc-

ture is created by ‘‘one-mismatch links’’ we now introduc
additional links connecting bit chains that deviate in tw
positions from complementarity, so defining the base gra
Gd

(2) , cf. Eq. ~2!.
Clearly, sinceGd

(1) is connected such ‘‘two-mismatc
links’’ of Gd

(2) are shortcuts of paths inGd
(1) . For example,

referring to the notion of bit operations associated with lin
~see Sec. II A!, two vertices linked byLk1k2

PGd
(2) , k1

Þk2, are also linked by the six paths corresponding to co
binations of the edgesL0 , Lk1

, Lk2
PGd

(1) .

Although every vertex now acquiresd(d21)/2 new
edges the former link structure is conserved. Thus, it co
be conceived that patterns created onGd

(2) retain a part of the
structure of the stable base configurations that are forme
0-12
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Gd
(1) . Counting, e.g., ‘‘two-mismatch’’ links in a base con

figuration B(s0 ,F1),Gd
(1) one finds that every occupied ve

tex now acquiresd new links onGd
(2) ~cf. Fig. 19!, aggregat-

ing to a total occupied neighbor degreed11. Thus, these
kind of patterns are forbidden fortu,d11. For tu>d11,
however, it turns out that apart from metastable structures
small influx the dynamics always ends up in the above
scribed configurations. Thus, in this case the base graphGd

(2)

always decays into two groups of high-mean-occupancy
ticesSH and low-mean-occupancy verticesSL . Both SH and
SL form (d11)-regular subclusters ofGd

(2) . Resuming the
considerations of Sec. IV B one finds that these stable b
configurations onGd

(2) have multiplicity 2d. The scenario for
growing influx is the same as onGd

(1) : for I .I c phases of
well-defined base configuration are interrupted by disorde
periods leading to pattern changes, and finally to a dynam
marked by randomness and very short lifetimes.

However, fortu,d11 where ‘‘relics’’ of patterns form-
ing on Gd

(1) are no longer allowed the behavior turns out
be more interesting.

As tools to investigate the structure of networks we ag
consider the mean occupancy rates of all vertices and p

FIG. 16. Mean residence time, i.e., time during whichkmin re-
mains unchanged~excluding a relaxation time of the first 5000 tim
steps!. All simulations onG10

(1) with (t l ,tu)5(1,8) have been al-
lowed to run for 105 time steps. ForI ,I c5270 no change ofkmin

has been found.

FIG. 17. Mean lifetime versus influxI obtained from simula-
tions onG10

(1) for (t l ,tu)5(1,8). The mean lifetime was determine
after allowing 5000 time steps for relaxation to a steady state.
everyI the simulations then run for 95 000 more iterations. Data
I ,100 are not shown since mean lifetimes exceeded simula
times.
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the mean-occupancy-patterns by defining subsetsS(a),Gd
(2)

with different threshold-occupancy ratesa ~see Sec. IV!. In
analogy with results for the one-mismatch case we find m
stable patterns for small influxes. Depending on the ra
I /uGd

(2)u, first completely 2-clustered, 4-clustered,
8-clustered patterns appear~4-clusters are chains, 8-cluste
cubes!. Next in a range of influxes cube-configurations dom
nate ~cf. Fig. 20!. Different from the 2- and 4-cluster pat
terns, however, the cubes do not fill the base graph c
pletely and 256 vertices not matching in the cube pattern
left.

Figure 21 shows data for every vertex’s mean occupa
obtained by a simulation onG12

(2) with (t l ,tu)5(1,10). The
set of vertices with highest mean occupancySH decays into
cubes, the set with lowest mean occupancySL forms a giant
component of 2816 vertices.SL consists of 1536 almos
never occupied vertices of occupied neighbor degree] uG\SL

561, 256 with] uG\SL
543 and 1024 with] uG\SL

539. All

occupied neighbor degrees are larger thantu and thusSL
entirely consists of stable holes. The 256 vertices not exa
matching in the cube pattern form a subsetSM of intermedi-
ate mean occupancy.SM turns out to contain only singletons
each of which is surrounded by elements ofSL which are
almost never occupied. Thus, vertices ofSM are isolated
spots of activity sustained by influx temporarily placed
their surrounding stable holes, but taken out immediately

or
r
n

FIG. 18. The bifurcation diagram obtained by iterating the fun
tion g(x) in comparison to simulation results for the maxima of t
population histogram for (t l ,tu)5(1,8) onG10

(1) ~filled squares con-
nected by lines!. Solid lines correspond to stable branches a
dashed lines to unstable branches. The region of the simulation
where three stable solutions coexist corresponds to the onse
disorder: The intermediate branch represents the mean popul
during periods in which the system closely assumes a base con
ration; the upper and lower branches are data sampled during
ordered phases. Especially for higher influx, simulation results
the data obtained by iteratingg are in very good agreement. Th
smaller diagrams visualize changes in the stability of fixed points
g at the branching points:~a! g ~solid line! becomes unstable a
I /uGu50.2, butg(2) ~dashed line! is stable. Hence a cycle appear
~b! At I /uGu50.3 alsog(2) ~solid line! becomes unstable and—sinc
g(3) ~dashed line! gives only one unstable solution—a 4-cyc
emerges.~c! At I /uGu50.45g(2) becomes stable again leading to
backward bifurcation and a 2-cycle.
0-13
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terwards due to overstimulation. Consequently, as long a
fresh influx is placed adjacent to it in the next time step
vertex ofSM dies out one time step after it has been insert
This view is confirmed by very short mean lifetime
^Tlife&SM

'1 of elements ofSM , which slightly grow with
increasing influx. Together with a growing probability th
isolated holes get filled this accounts for relatively lar
mean occupancieŝs&SM

in comparison tô s&SL
. Though at

the first glance it seems surprising that a vertex can sur
at a site where it is surrounded by almost always empty s
this indicates a mechanism that is to prevail in a consecu
regime: isolated vertices of high durability are sustained
quickly fluctuating short-living influx in their neighborhood

IncreasingI over approximately 80 the cube patterns b
come unstable and fromI'100 onwards a pattern marked b
six-levels of mean occupancy~see Fig. 22! is chosen. In
contrast to the appearance of several levels of mean o
pancy due to transitions between isomorphic stable base
figurations this grouping is of a different nature. While in t
first case simulations started with different initial conditio

FIG. 19. An illustration of how ‘‘two-mismatch links’’~dashed
line! contribute to the occupied neighbor degree of occupied ve
ces in a base configurationB(s0 ,L1) . Occupied vertices inB(s0 ,L1)

are drawn in black, empty ones in white. Two clusters~e.g.,o and
p) in B are connected via the ‘‘one-mismatch link’’~solid line! L1.
Except o the one-mismatch neighborshj5L j (p), j Þ1, of p are
holes. Apart from the holes’ 2-cluster matesL1(hj ) all their neigh-
bors are occupied. If one pursues an inversion linkL0 from any
such holehj adjacent top, a vertexq5F0(hj ) is reached which
is—via L1 j— also a two-mismatch neighbor ofo. One can easily
verify that o has no other occupied ‘‘two-mismatch neighbors
Consequently, in a base configurationB on Gd

(2) every occupied
vertex hasd11 occupied neighbors.

FIG. 20. Mean lifetime~log scale! versus influx for simulations
on G12

(2) with (t l ,tu)5(1,10). Successively, the system forms cu
patterns, multiple-group patterns, singleton patterns, and a
multiple-group patterns. Then, patterns become transient and fin
a randomness-driven regime is entered~see text!.
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lead to different numbers of groups and changing mean
cupancy levels~depending on the time step when transitio
occur! simulations performed with different initial condition
now always reproduce these six groups and their mean
cupancies.

The interval of influxesI P@80,100# is characterized by
transitions between both types of patterns in the course
which for higher influxes periods during which the six-grou
pattern is assumed more and more prevail. The change o
mean population averaged in both types of pattern is dra
for I 590 the cube pattern can sustain approximately^n&
'1024 vertices while at the onset of their appearance
group patterns can support a mean population of only ab
^n&'600 occupied sites. Comparing the mean occupa
levels of the six-group pattern with all previous pattern stru
tures one remarks that, while groups of always empty s
are still present, groups of almost permanently occupied
tices are lacking. All groups have mean occupancy ra
smaller than 0.7. This, and the relatively short lifetimes
vertices belonging to the groupsS4 ,S5, and S6 with high
mean occupancy, speaks in favor of an interpretation a
‘‘dynamic’’ pattern. Occupied vertices belonging to differe
groups ‘‘fluctuate’’ with different rates, while the interplay o

i-

in
lly

FIG. 21. Every vertex’s mean occupancy obtained by a simu
tions onG12

(2) with (t l ,tu)5(1,10) andI 530. Vertices are labeled
by integers z corresponding to their respective bit chains. The
laxation time wasT055000; mean occupancies have been samp
over T12T0515 000 further time steps. An offset has been add
to display the groupSL with the lowest mean occupancŷs&SL

50. The intermediate groupSM has mean occupancŷs&SM

'0.01; the group with highest mean occupancy^s&SH
'1.0.

FIG. 22. Mean occupancy rates of verticesz derived from a
simulation onG12

(2) with (t l ,tu)5(1,10) andI 5100. Six groups of
verticesS1 , . . . ,S6,G12

(2) can be distinguished by their mean o
cupancy.
0-14
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PATTERNS IN RANDOMLY EVOLVING NETWORKS: . . . PHYSICAL REVIEW E 67, 031920 ~2003!
them secures that the distinct role of the groups is preser
In the following the nature of this dynamic pattern will b
elucidated in more detail.

Figure 22 and Table I give data characterizing these
groups: mean size of the cluster^C& on G t that a vertex of a
group belongs to, its mean lifetimêt&, mean switch rate

^ r̄ &, the mean frequencŷf small& of not belonging to the gian
component, and the mean cluster size^Csmall& of the small
clusters if the vertex is not in the greatest component ofG t .
On average, elements ofS1 ,S2, andS3 belong to 371 clus-
ters onG t , but are very seldom members of small clusters
singletons, have relatively short lifetimes and high swit
rates. In contrast, elements of the groups of higher m
occupancyS4 ,S5, andS6 typically have smaller mean cluste
sizes, form more frequently small clusters, preferably sing
tons, and have long lifetimes. Mean lifetimes are increas
with increasing mean occupancy of the groups.

Exploring the interconnectedness and network structur
the groupsS1 , . . . ,S6 one obtains the following picture~cf.
Fig. 23!: The strongly interconnected groupsS2 andS3 form
a core ofG to which—exceptS4—all the other groups are
attached. Excluding this core, each of the other groups c
sists of singletons. The largest setS1 is a reservoir of stable
holes and connectsS4 with the core. Thus, vertices ofS4
play a similar role as the previously mentioned isolated ho
in the cube pattern: they receive their whole sustenance f
the influx and have no permanent connections. While
group of second largest mean occupancy,S5, has only links
to the less populated part of the core,S2; the most active
vertices, elements ofS6, have connections with both parts o
the core.

Consequently, apart from stimulation by random influ
elements ofS5 obtain stimulus from the core groupS3. Nev-
ertheless, the stimulation is not optimal leading to a me
occupation of only 1/3 ofS5. The groupS6 receives stimu-
lation from both core groups and so can support a hig
population thanS5. Contrarily, since being strongly intercon
nected and connected to both the richly populated groupS5
andS6 most vertices ofS2 are suppressed. In the case ofS3,
which does not connect toS5, suppression is lower and thu
a higher mean population can be sustained. The data sh

TABLE I. Data characterizing the six groupsS1 , . . . , S6 ob-
tained from simulations onG12

(2) with (t l ,tu)5(1,10) andI 5100. In
30 000 time steps vertices ofS1 have always belonged to the grea
est subcluster ofG t , hence^Csmall& could not be measured. Sinc
they are immediately taken out after they get into the system, st
holes have a mean lifetimêt&50.0. This means that their mea
lifetime is shorter than the discretization of time.

GroupS uSu ^C& ^t& ^r & ^ f small& ^Csmall& ^n&

S1 1124 371.0 0.0 1.0 0.0 0.05
S2 924 371.0 3.8 0.26 0.0 7.0 27.2
S3 924 371.0 5.4 0.18 0.0 4.6 61.3
S4 134 1.0 10.0 0.1 1.0 1.0 26.5
S5 330 160 18.1 0.06 0.5 1.007 107.0
S6 660 260 35.3 0.028 0.27 1.03 318.1
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in Table I are in qualitative agreement with this interpre
tion.

Figure 24 displays simulation data for the change of
relative occupationssi51/uSi u(vPSi

s̄(v), i 51, . . . ,6, of the
six groups with increasing influx. Initially, all groups ar
clearly distinct, groups 4–6 have relatively low occupati
and the mean populations ofS2 and S3 are clearly above
zero. AsI grows whileS2 andS3 lose populationS4 , S5, and
S6 become more populated, but at different rates. Thus
I'150 the groupsS4 , S5, andS6 become united leading to
the formation of a single setSH of high mean occupancy
vertices. A similar outcome is observed in the cases ofS1 ,

le

FIG. 23. Visualization of the network structure of the grou
S1 , . . . ,S6. The squares indicate many connections of vertices o
group among themselves, isolated circles in a group visualize th
consists of singletons. The thickness of the connecting lines giv
measure of the number of links connecting elements of differ
groups. Because of their importance for the existence of giant c
ponents inG t , the core groupsS2 and S3 are bounded by thick
lines. Larger boxes correspond to larger groups.

FIG. 24. Relative occupationsi51/uSi u(vPSi
s̄(v) of the six

groups~labeled by their group number! for different influxes. For
I'140 groupsS1 and S2 unite, for I'175 S3 joins them. At I
'220S3 again becomes separated, forI'240 alsoS2 disjoins from
S1. Similarly, S4 , S5, and S6 merge at I'150. This leads to
5-group patterns (I P@140,150#), 4-group patterns (I P@150,175#
and I P@240,260#), singleton patterns (I P@175,220#), and a
3-group pattern (I P@220,240#). For I .260 transitions between
isomorphic configurations set in.
0-15
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M. BREDE AND U. BEHN PHYSICAL REVIEW E67, 031920 ~2003!
S2, andS3. For I'140 groupS2 joins S1 and becomes in-
distinctive fromS3 at I'175, leading thus to a single low
occupancy groupSL . During this process the overall mea
population of G t , ^n&, is growing. Consequently, forI
P@175,220# again a 2-group pattern of 1124 high-mea
occupancy and 2972 low-mean-occupancy vertices appe
consisting now entirely of long-living singletons ‘‘sustaine
by the influx.’’ Transition patterns before this pattern appe
are 5- and 4-group patterns, after it grew unstable 3-gr
patterns are forming.

As I is further increased the influx that heretofore guar
teed the sustenance ofS5 andS6 gradually causes overstimu
lation. Thus, the mean populations ofS5 andS6 are shrink-
ing, causing, in turn, less overstimulation of the core. S
again a small population can persist inS2 andS3. Altogether,
for further increased influx the different groups disentang
leading to a revival of the multigroup patterns.

From I'260, on these dynamic multiple group patter
become unstable and rearrangements between different~iso-
morphic! configurations set in. Analogous to the scena
discussed in Sec. V B disordered periods dominate more
more and finally lead to disorder.

Interestingly, the group structure allows some insight in
the actual cluster structure ofG t at an arbitrary time step
Obviously, giant and greater clusters onG t can only emerge
as long as the core is populated. As the mean populatio
S2 does not suffice to form a giant component withinS2 , S3
functions as the ‘‘glue’’ of giant clusters onG t . Elements of
the ‘‘backbone’’ of the giant cluster preferably come fromS2
and S3. As the population ofS2 decreases vertices ofS5
increasingly become detached from the core and tend to f
small clusters and singletons.

A great component, however, is still retained by eleme
of S6 andS2 bound together byS3. As the population ofS2
also sinks below a certain threshold, greater component
G t become starlike, their hubs being inS3. Finally clusters
different from singletons completely vanish, resulting
purely influx sustained patterns of singletons.

VII. PATTERNS FOR t lÌ1

For completeness in this section stationary patterns
pearing for lower thresholdst l.1 will be sketched briefly.

Figure 25 displays data for the mean occupancy rate
every vertex gathered from a simulation onG11

(1) with
(t l ,tu)5(3,10). One realizes two relatively broad bands
mean occupancy rates. Investigating the structures ofSH
5S(0.5) andSL5G\SH reveals that, analogously to thet l
<1 situation both high- and low-mean-occupancy grou
completely decay into 2-clusters. Now, however, su
2-cluster patterns are only existing with mean occupa
rates^s&SH

significantly smaller than 1 and̂s&SL
far above

zero. Thus, since a ‘‘frozen’’ 2-clustered state~see Sec. III!
cannot subsist fort l.1, a fluctuating 2-cluster pattern i
formed. At every single time step only a part of the hig
mean occupancy vertices is occupied. As a consequence
all holes are stable. A part of the holes can become occup
thus giving the necessary stimulation to the vertices ofSH
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which are present. On average, whereas elements ofSL have
high occupied neighbor degrees~and are on the verge o
being overstimulated!, elements ofSH have low occupied
neighbor degrees~and are threatened by understimulation!.
On the whole, however, vertices occupying such holes t
to get removed with higher probability. One can imagine t
situation as a pattern of long-living occupied 2-clusters flo
round by short-living 1- and 2-clusters, living just for the
stimulation.

Considering this situation as evolved from an ide
2-cluster patternB(s0 ,P) one understands that it can only su
vive for an intermediate range of influxes. On the one ha
if the influx is too low, not enough occupied sites are driv
out by overstimulation that holes could lose stability. Thu
the sites occupied in the ideal patternB did not receive the
necessary stimulation and the pattern was unstable. On
other hand, too high influx causes more and more of
frequently occupied vertices to be almost permanently oc
pied. This but leads to many stable holes. So, for hig
influxes an abrupt transition to disorder occurs. The interm
diate behavior~transitions between isomorphic configur
tions! is lacking in this case.

VIII. CONCLUSIONS

To conclude, we have presented a probabilistic model
a local-rule governed evolution of occupied and empty s
on regular graphsG. Aiming chiefly at a description of
INW’s in the immune system we studied two types of ba
graphsG(1) andG(2) created by describing idiotypes by b
strings and their functional interactions by ‘‘matching rules
In contrast to most modeling approaches to idiotypic n
works @5#, the model abstains from all details of the dynam
ics of the real-life interactions of cells, but aims at und
standing principal mechanisms of network formation.

On G(1) andG(2) the dynamics generated by the windo
algorithm leads to organized network structures, which c
sist of functionally different subsets, distinguished, e.g.,
their mean occupancy. On both types of base graphs for

FIG. 25. The mean occupancy rate of every vertex from sim
lations onG11

(1) with (t l ,tu)5(3,10) and influxesI 5150, 300, and
500. For low influx both the high-mean-occupancy group and lo
mean-occupancy group are considerably apart from their extr
values 1 and 0. AsI grows,SL becomes less occupied and vertic
of SH evolve to an almost permanent presence. Thus, increasiI
further the high mean occupancy set loses stimulation and the
tern becomes unstable.
0-16
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PATTERNS IN RANDOMLY EVOLVING NETWORKS: . . . PHYSICAL REVIEW E 67, 031920 ~2003!
fluxes I small compared to the system size, a multitude
such network patterns has been found. We developed a
tion of pattern stability and classified them as metastable.
larger influxes one type of pattern prevails. In the case of
one-mismatch graphsG(1) patterns for intermediate influx
always consist of an arrangement of 2-clusters of holes
occupied vertices. We have given a classification of th
patterns and have described fluctuations around an ideal
tern structure by a statistical approach via defects. FoI
.I c these 2-clustered patterns become unstable, and the
tem starts oscillating between periods during which a pat
structure prevails and periods of disorder. Finally, increas
I further, the dynamics is marked by randomness and
tremely short lifetimes. We elucidated the nature of the
transitions.

These 2-clusters are nothing but the idiotype–a
idiotype pairs that have been proposed as one mechanism
the preservation of memory of previously encountered a
gen. ~The anti-idiotype represents the internal image of
antigen @21,36#.! Their arrangement in a coherent patte
however, leads to an overall memory capacity of the netw
that increases only logarithmically with the system size. T
is clearly insufficient for a real immune system. The para
eter range where the coherent 2-cluster patterns emerge
therefore not be the working regime of a healthy immu
system.

It is worthwhile to note that in this regime~and in all
regimes allowing for memory onG(2)) the network connec-
tivity decreases with growing simulation time, i.e., wi
growing age. This is in accord with experimental obser
tions and was also found in other modeling approaches@5#. It
suggests that the networks’ gradually losing links is an
sence of the limited range of allowed occupied neighbor
grees and hence of crosslinking.

On the more densely wired graphsG(2) cube patterns
have been found for an intermediate range of influxes.
creasingI beyond a threshold, the system then settles i
dynamic ‘‘multiple-group’’ patterns. In this regime, sever
subsetsSj of the base graphG(2) can be distinguished ac
cording to their mean occupancy. Vertices of these sub
also differ in the structure of the cluster onG t , which they
typically belong to. Two of these subsets form a stron
interconnected core onG t , to which vertices of the othe
groups are bound with different strengths. Each of the ot
subsets consists only of singletons and links to the core
some of the other groups. The core groups have been fo
to be always rarely populated, the major fraction of the po
lation being typically contained in two of the other group

The structure encountered in this parameter regime i
very good agreement with general ideas about the topo
of INW’s @21,27,37–39#. It exhibits a structured core tha
could correspond to a central part generally believed to e
in INW’s. Furthermore, richly populated noncore groups a
in good agreement with the notion of a peripheral part
INW’s. Long lifetimes of vertices belonging to these grou
are in accord with the idea that the peripheral part of
network is responsible for the preservation of idiotyp
memory.

The issue about the in detail working of idiotypic memo
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is still much disputed. Apart from the ‘‘internal image hy
pothesis’’ several mechnisms are currently known@40–43#.
One of these bases on certain cells~folicular dendritic cells!
that occasionally exhibit parts of antigen, which is deem
enough to sufficiently stimulate the complementa
idiotype—allowing in this way idiotypic memory in a singl
antigen-specific clone.

Derived from our model, a mechanism for idiotyp
memory seems possible: Memory could be retained in
single antigen-specific clone that is not preferably stim
lated, but occasionally receives stimulation from the cen
part of the network and from new complementary idiotyp
from the bone marrow which serves as a background sti
lus. This mechanism could collaborate with antigen pres
tation by follicular dendritic cells.

Two further issues that follow from the multigroup stru
ture of networks in our model seem worthwhile to note.

First, during its evolution the system generates a groupS1
of always suppressed idiotypes. Although the dynamics
antigens differs from that of idiotypes, the existence of su
a group implies that there should be a set of antigens aga
which an individual is immune, without ever having bee
immunized against. More speculatively, one could ident
the setS1 with a ‘‘mirror image of the molecular self.’’ Fol-
lowing this interpretation, antibodies belonging toS1 are au-
toreactive, but are almost always suppressed by the rem
der of the network. The actual location of this set
determined by encounters with other antigens and, chiefly
the fortuitous history of the deployment of bone marrow
flux during early life.

As a second fact, while the number of autoantibodies
creases@44#, the bone marrow production is known to d
crease with growing age@42#. Here, additional to a decline in
connectivity till stationarity is reached, our model sugge
another structural alteration of the network. Assuming
young individuals a working point of INW’s that is above th
parameter regime of single-clone patterns, a decreased
marrow production leads to smaller cores and an increa
periphery, i.e., an accumulation of memory and loss of pl
ticity.

Summarizing our main result, taking into account diffe
ent levels of coarse graining of reaction affinities betwe
idiotypes—as represented by the base graphsGd

(1) and
Gd

(2)—leads to two different regimes of steady-state beh
iors: ~i! rigid ‘‘coherent’’ configurations onG(1) and ~ii ! dy-
namic patterns onG(2) which are increasingly dominated b
1-clones. We conjecture that generally isolated clones a
consequence of a high connectivity of the network and h
interaction strength between idiotypes. It is suggestive t
the bone marrow influx is a driving mechanism for shapi
the structure of INW’s, which together with the interactio
strength of idiotypes, determines the working point of
INW.
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